

This article was downloaded by:

On: 25 January 2011

Access details: *Access Details: Free Access*

Publisher *Taylor & Francis*

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Separation Science and Technology

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713708471>

In-Situ Internal Reflection Spectroscopy for the Study of Surfactant Adsorption Reactions Using Reactive Internal Reflection Elements

J. J. Kellar^a; W. M. Cross^a; J. D. Miller^a

^a Department of Metallurgical Engineering, University of Utah, Salt Lake City, Utah

To cite this Article Kellar, J. J. , Cross, W. M. and Miller, J. D.(1990) 'In-Situ Internal Reflection Spectroscopy for the Study of Surfactant Adsorption Reactions Using Reactive Internal Reflection Elements', *Separation Science and Technology*, 25: 13, 2133 – 2155

To link to this Article: DOI: 10.1080/01496399008050448

URL: <http://dx.doi.org/10.1080/01496399008050448>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

IN-SITU INTERNAL REFLECTION SPECTROSCOPY FOR THE STUDY OF SURFACTANT
ADSORPTION REACTIONS USING REACTIVE INTERNAL REFLECTION ELEMENTS

J. J. Keltar, W. M. Cross, and J. D. Miller
Department of Metallurgical Engineering
University of Utah
Salt Lake City, Utah 84112

ABSTRACT

Infrared spectroscopy has been one of the most useful experimental techniques for the analysis of surface reactions. In particular, Fourier transform infrared (FTIR)/internal reflection spectroscopy (IRS) is most often used for *in-situ* studies. To date, three FTIR/IRS methods have been used for *in-situ* measurements. These techniques are evaluated for use in the characterization of surface reactions common to flotation systems. The method which uses mineral crystals as reactive internal reflection elements (IREs) is of particular interest because it allows surfactant adsorption densities to be calculated directly from *in-situ* spectral data in real time, and is the focus of this paper.

Application of *in-situ* FTIR/IRS with reactive IREs is demonstrated for collector adsorption reactions in each of the four major flotation systems. Also, the use of reactive IREs in the near-IR spectral region and in spectroelectrochemical research is discussed.

INTRODUCTION

Froth flotation is a process by which certain particle types are concentrated by separation from other types in a particulate suspension. Gas bubbles are used to float the hydrophobic particles to the air/water interface, while the hydrophilic particles remain in suspension. Particles to be floated are generally rendered hydrophobic by the adsorption of surfactants (collectors) from the aqueous phase. Controlling the surface chemistry of the solid/water interface is one

of the most critical aspects to be considered for efficient flotation separations.

Infrared spectroscopy has been one of the most useful experimental techniques for the analysis of surface reactions in flotation systems. The utility of ex-situ transmission spectroscopy was first demonstrated for flotation systems by French et al. (1), and subsequently by many other flotation chemists in following decades (2-5). These ex-situ measurements have given a wealth of information on many flotation systems. However, ex-situ IR measurements have always been subject to the criticism that surface states may be altered during sample preparation (6). In fact, any ex-situ methodology, especially the high-vacuum techniques such as auger and x-ray photoelectron spectroscopy, suffer from the same criticism.

With the advent of Fourier transform infrared (FTIR) spectrometers, many low-energy throughput IR experimental techniques previously unused by flotation researchers have come into greater use. In particular, internal reflection spectroscopy (IRS) allows for in-situ measurements and as such has become the method of choice for infrared analysis of flotation systems. IRS involves the internal reflection of light through a crystal termed an internal reflection element (IRE). This is shown schematically in Figure 1 for a ray of light undergoing multiple internal reflections in an IRE. As is shown in Figure 1, a small portion of the light actually samples the IRE/solution interface. The depth of penetration into the rarer medium and the number of internal reflections within the IRE are determined by the optical constants of the system and can be readily calculated (7). Typically the depth of penetration and the number of internal reflections vary between 0.1-1 μ and 10-50, respectively.

There are several reasons why in-situ IRS has been and will continue to be of such significance in flotation research. First, it

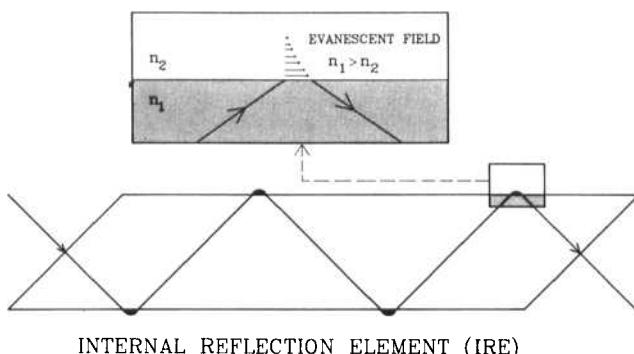


Figure 1. Schematic of light undergoing multiple internal reflections in an IRE, where n_1 and n_2 are the refractive indices of the IRE and sample.

confirms many conclusions based on previous ex-situ measurements. Second, the short sampling depth (usually a fraction of the wavelength) minimizes the strong infrared absorbance of water, a condition which had limited the use of in-situ IR spectroscopy. Finally, from the multiple reflections at the IRE/sample interface, sensitivity is enhanced greatly over typical transmission experiments. The sensitivity of the IRS technique is evident by the calculation of adsorption densities from spectral data at very dilute equilibrium collector concentrations where submonolayer coverages occur (8). Since the 1983 review of IRS applications in flotation by Strojek et al. (9), several new developments in in-situ IRS have occurred. Three approaches which have been used to study flotation systems in-situ by IRS are discussed in the following section.

EXPERIMENTAL TECHNIQUES

Method 1. Particulate Suspension with Inert IRE

By far the most common and easiest application of in-situ IRS analysis involves pressing and dewatering a particulate suspension against an "inert" IRE such as germanium. Table 1 lists the various applications of this method. As can be seen from Table 1, the mineral particles studied have always been sulfide minerals. The reason for

Table 1.
Flotation Studies Using In-Situ FTIR/IRS,
Method 1. Particulate Suspension with Inert IRE

Mineral(s)	Collector(s)	Concentration	Reference
Marcasite	Ethylxanthate Dixanthogen Monothiocarbonate	5×10^{-5} - 1.5×10^{-4} M	11
Galena	Ethylxanthate Dithiophosphate	not reported	12
Chalcocite Chalcopyrite Pyrite	Thionocarbamate	1×10^{-4} - 1×10^{-3} M	13
Sphalerite	Ethylxanthate	5.2×10^{-5} M	14
Chalcocite Chalcopyrite Pyrite Galena	Ethylxanthate	1×10^{-3} - 1×10^{-4} M	15

the absence of studies involving other mineral systems (e.g., oxides and semisoluble salts) is not immediately clear. However, IRS theory predicts that the electric field of the IRS beam determines the strength of the sample IR signal (7,10). Apparently, the high refractive index of sulfides ($n > 2$) gives rise to intense electrical fields which are ideal for this method of study.

The strength of Method 1 is that surface reactions can be studied *in-situ* for many particulate suspensions. Another advantage of the method is that scattering from the particles, common to many techniques such as diffuse reflectance, is absent due to the short pathlengths used. Of particular interest is the possibility of studying mineral particles *in-situ* under controlled potential (15). Such spectroelectrochemical experiments should help elucidate many of the unresolved questions concerning mechanisms involved in sulfide mineral flotation.

However, this method is not without its experimental problems. Since the sampling depth is short, the particulates must be in intimate contact with the "inert" IRE. Initial researchers reportedly had difficulty in achieving adequate contact with the IRE (9). Reproducible contact between experiments is very difficult, and consequently only qualitative measurements are possible. Also, collector contamination of the "inert" IRE cannot be ignored. Surface contamination can be significant, especially at the surfactant concentrations commonly used (see Table 1). The reactivity of an "inert" IRE is demonstrated by the *in-situ* spectrum of the residual contamination from a 5×10^{-3} M potassium amylixanthate solution on an "inert" germanium IRE shown in Figure 2. The IR absorption bands from this contamination of the IRE could easily be attributed to collector species adsorbed by mineral particles in the suspension adjacent the IRE.

All the IRS studies shown in Table 1 used an IRE in the shape of a flat-plate prism. This geometry readily allows for dewatering of the mineral particle suspension. However, FTIR spectrometers typically have a circular beam, and focussing onto the end of the flat-plate IRE geometry can be cumbersome. In recent studies, cylindrical IREs using cassegrarian focussing optics which maximize energy throughput for the circular FTIR beam have become more widely used. This IRS accessory, called the CIRCLE^R cell, has been used to investigate mineral particle suspensions *in-situ* (16,17). Because the IRE is completely enveloped by the sample, suspensions can be used with lower solid/liquid ratios than those reported in Table 1. Nevertheless, possible collector contamination of the "inert" IRE must still be taken into consideration.

Method 2. Coating of Inert IRE

Another method of studying adsorption reactions *in-situ* involves coating, usually by vacuum deposition, of the desired mineral onto an inert IRE. The coated IRE can then be placed in solution, and sur-

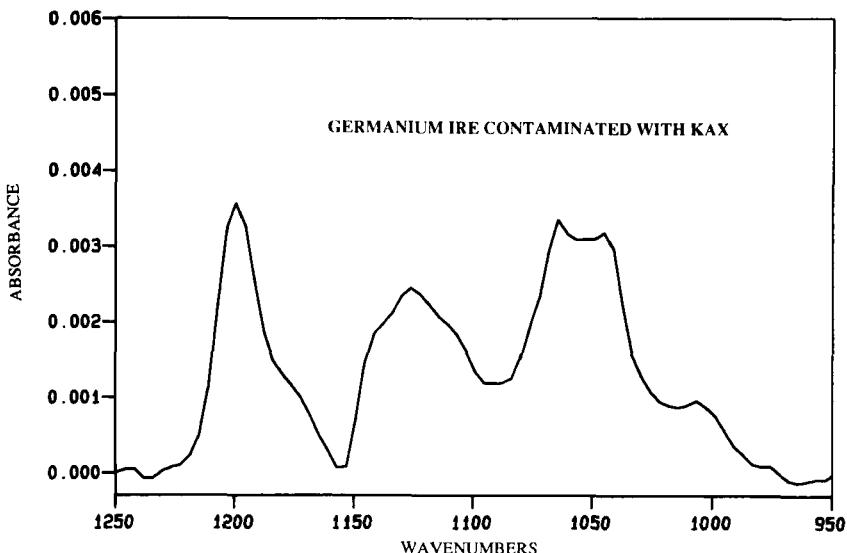


Figure 2. In-situ FTIR/IRS spectrum of species adsorbed from an amylixanthate (5×10^{-3} M) solution at the surface of an inert germanium IRE.

factant adsorption occurs directly onto the exposed mineral surface. Shown in Table 2 are flotation systems where Method 2 has been utilized. Nowhere is it mentioned how the IREs were reconditioned between experiments. The aforementioned problem of Method 1, adequate contact between mineral and IRE, is alleviated by this technique. Reproducible mineral film thickness and coherency have limited this approach to only semiquantitative work. Given the tedious nature of coating a mineral film of appropriate composition and crystal structure onto the inert IRE, this approach has been used less often than Method 1.

Method 3. Reactive Internal Reflection Elements

During the past several years, researchers have demonstrated the utility of fabricating the desired substrate into a reactive IRE and directly studying surface reactions in-situ at the IRE surface (20,

Table 2.
Flotation Studies Using In-Situ FTIR/IRS,
Method 2. Coating of Inert IRE.

Mineral	Collector	Concentration	Reference
Fluorite	Sodium	1×10^{-5}	18
	Dodecylsulfate	5×10^{-3} M	
Cassiterite	Styrene Phosphonic Acid	2.7×10^{-4} 1.6×10^{-3} M	19

21). Miller and Kellar (22) used this approach to demonstrate the quantitative analysis of collector adsorption reactions for several flotation systems. It was shown that the adsorption density, reaction kinetics, and orientation of collectors at the surface of mineral IREs can be followed in-situ and in real time. Furthermore, it was shown for the first time that a natural mineral crystal (fluorapatite) could be prepared as a usable IRE on which adsorbed collector could be examined from its FTIR spectrum. Of course, Method 3 is limited to systems where IR transparent IRE crystals are available and appropriate care must be taken to avoid and/or correct for any impurity contamination from the system. Fortunately, the reactive IRE crystals are easily cleaned and restored for repeated use.

REACTIVE INTERNAL REFLECTION ELEMENTS

The use of reactive internal reflection elements can provide considerable information from real-time spectral data. As shown in Figure 3, this method allows direct calculation of collector **adsorption density** and thus determination of adsorption kinetics as well as the corresponding equilibrium adsorption isotherm. Also, it is possible to determine, by frequency shifts or the appearance/disappearance of absorbance bands, the **adsorption state**, i.e., whether the collector is physically or chemically bonded at the IRE surface. Finally, the **orientation** of adsorbed species can be deduced by comparing the spectra obtained with different states of polarized light. Generally, Methods 1 and 2 can only provide information regarding the state of the adsorbed species and thus are of limited utility.

Adsorption Density

In 1987, Sperline, Muralidharan, and Freiser calculated from in-situ spectral data the adsorption density, Γ (mol/cm²), of a pyridinium-based surfactant onto a zinc selenide cylindrical IRE. In this case, the effective number of internal reflections had to be

IN-SITU INFRARED SPECTROSCOPY WITH
REACTIVE INTERNAL REFLECTION ELEMENTS

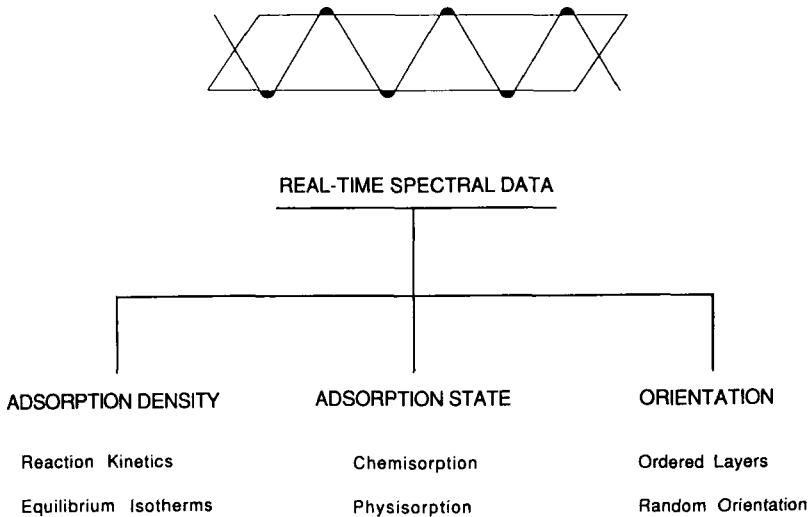


Figure 3. Utility of FTIR Internal Reflection Spectroscopy (IRS) with reactive internal reflection elements (IREs) for the analysis of surface reactions.

determined by a calibration procedure. Subsequently, Miller and Kellar (22) used flat-plate prisms of fluorite and sapphire (no calibration necessary) to calculate collector adsorption densities according to the following equation:

$$\Gamma = \left(\frac{A}{l/t} \cot \theta - \epsilon C_b d_e \right) / 1000 \epsilon \left(\frac{2d}{d_p} \right)^2 \quad (1)$$

where A = integrated absorbance (cm^{-1})

l = IRE length

t = IRE thickness

ϵ = molar absorptivity of surfactant ($l/(\text{cm}^2 \cdot \text{mol})$)

C_b = surfactant bulk concentration (mol/l)

d_p = depth of penetration

d_e = effective depth.

The terms d_e and d_p are functions of the optical constants of the system and can be determined without difficulty (7). The absorbance, A , for the adsorption density calculation is generally obtained by integration of the absorbance bands of the aliphatic region of the infrared spectrum (3,000-2,800 cm^{-1}). Other experimental details for the calculation of adsorption densities are given elsewhere (8).

Orientation

Haller and Rice (1970) demonstrated the possibility of determining the orientation of an adsorbed layer on an IRE. Using the strong IR absorbance band assigned to the asymmetric CH_2 stretching vibration (2925 cm^{-1}), Haller and Rice defined two limiting conditions: molecular backbone normal to the IRE (CH_2 planes parallel to the surface) and completely random orientation of the CH_2 planes with respect to the IRE. The theoretical absorbance ratio using polarized light (A_{\perp} (perpendicular) and A_{\parallel} (parallel)) can be calculated for the two states of polarization from the optical constants of a specific system. This theoretical A_{\perp}/A_{\parallel} ratio, termed the dichroic ratio, can then be compared to the experimental A_{\perp}/A_{\parallel} ratio determined spectroscopically and the extent of ordering of the adsorbed state inferred.

$$\text{Dichroic Ratio} = \frac{A_{\perp}}{A_{\parallel}} \quad (2)$$

where the theoretical absorbances are defined in terms of the electric field vectors (E_0) in the three spatial directions x , y , and z .

The dichroic ratio for vertical orientation with CH_2 planes parallel to the surface:

$$\frac{A_{\perp}}{A_{\parallel}} = \frac{E_{yo}^2}{E_{xo}^2} \quad (3)$$

The dichroic ratio for random orientation with CH_2 planes random to the surface:

$$\frac{A_{\perp}}{A_{\parallel}} = \frac{E_{yo}^2}{E_{xo}^2 + E_{zo}^2} \quad (4)$$

In this paper, the in-situ FTIR/IRS technique using reactive IREs (Method 3) has been applied to each of the four major flotation systems. The alumina/sodium dodecylsulfate (SDS) system is used as an example of insoluble oxide/silicate flotation, while the fluorite/oleate system serves as an illustration of semisoluble salt flotation. For sulfide flotation, sphalerite is used as the reactive IRE

with potassium amyloxanthate (KAX) and potassium ethylxanthate (KEX) as collectors. In the case of soluble salt flotation, sylvite is used as the IRE with n-octylamine as collector. Finally, the use of reactive IREs in the near-IR spectral region and in spectroelectrochemical research is discussed.

Alumina/SDS

The alumina/SDS system has been used frequently as a model insoluble oxide/silicate flotation system for the study of collector adsorption reactions (24-26). This system is useful for illustrating the role of coulombic forces (i.e., surface charge of the solid determined by the solution pH and the charge of the surface-active species) in adsorption processes. It is generally believed that the SDS species aggregate on the surface in vertically oriented monolayer patches called "hemimicelles," although recent thermodynamic calculations indicate that the aggregation event could lead to vertical bilayers called "admicelles" (27,28). Several in-situ spectroscopic techniques have been used to study this system (22,26,29). Most of these techniques rely on a tracer molecule to give information concerning its surface surroundings, from which the behavior of the adsorbed collector species may be inferred. The internal reflection FTIR technique used by Miller and Kellar (22), on the other hand, directly examined the spectral characteristics of the adsorbed collector in its surface state. These authors demonstrated that the adsorption density and orientation of SDS on alumina can be determined in-situ. In this section, additional in-situ IRS data will be given for the alumina/SDS system and compared with previous results reported in the literature.

From the in-situ FTIR/IRS spectra similar to those shown in Figure 4, the SDS adsorption densities were calculated using Equation (1) and are compared in Table 3 to the adsorption densities measured on alumina powder by a solution depletion experimental procedure (26). It can be seen that the results from these drastically different experimental techniques agree quite well at what is presumed to be equivalent monolayer coverage. One interesting point which is revealed by these FTIR/IRS experiments is the agreement between the adsorption density of SDS by alumina as determined in H_2O and in D_2O . This agreement adds credibility to previous results obtained with D_2O as solvent (22). Deuterium oxide was used in previous investigations because it has no IR absorption bands in the aliphatic C-H stretching region ($3000-2800\text{ cm}^{-1}$). It should be noted that the IR absorbance from adsorbed collector species (circa 0.02 absorbance units) is typically two orders of magnitude smaller than the maximum absorbance due to the solvent (H_2O or D_2O). Therefore, in order to analyze the IRS absorbance spectra in H_2O and calculate adsorption densities in the region $3000-2800\text{ cm}^{-1}$, the strong IR absorption by H_2O must be taken into consideration as was done for the data presented in Table 3 and Figure 5. This analysis is detailed in a forthcoming paper (30).

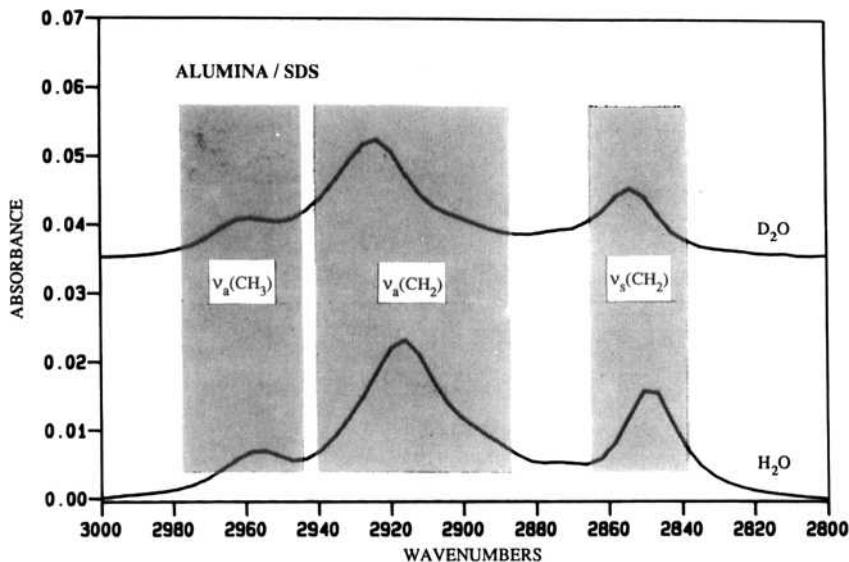


Figure 4. In-situ FTIR/IRS spectra of SDS adsorbed from H_2O and D_2O solutions at the surface of an alumina IRE.

Table 3.
Adsorption Density of SDS by Alumina at
pH 6.5 (26) and pH 7.3 (22; present work)

SDS Equilibrium Concentration (M)	SDS Adsorption Density (mol/cm^2)			
	Reference 26	In-Situ IRS		
		H_2O	D_2O	Reference 22
1×10^{-3}	6.7×10^{-10}	4.5×10^{-10}	4.4×10^{-10}	
4×10^{-3}	6.7×10^{-10}	--	5.3×10^{-10}	

Using polarized light and calculated dichroic ratios, Miller and Kellar (22) studied the orientation of SDS on alumina. Table 4 shows theoretical and in-situ experimental A_{\perp}/A_{\parallel} ratios for an adsorbed SDS film. It can be seen from the dichroic ratios reported in Table 4 that the adsorbed SDS is mostly random in orientation to the alumina IRE. This was the first attempt to determine in-situ the orientation of a self-assembled monolayer adsorbed from an aqueous solvent. Most prior IRS orientation studies have used monolayers deposited from organic solvents and examined ex-situ. While it has been found that the monolayers formed from these nonaqueous solutions were vertically oriented with CH_2 planes parallel to the IRE surface (31,32), it appears from the results presented in Table 4 that the in-situ adsorption state of SDS at the surface of alumina (adsorption from the aqueous phase) is not particularly ordered. This finding continues to receive attention in our research program at the University of Utah.

Following the determination of the equilibrium adsorption isotherm, the kinetics of the SDS adsorption process at the alumina

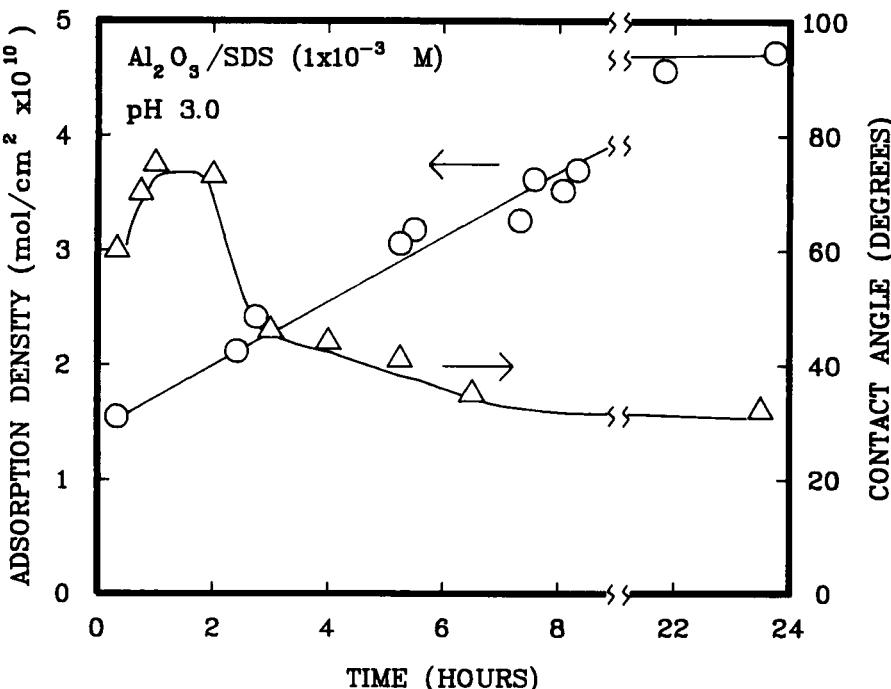


Figure 5. Adsorption density from in-situ FTIR/IRS data and contact angle at the alumina IRE surface as a function of time for 1×10^{-3} M SDS.

Table 4.
 Orientation of SDS on Al_2O_3
 at pH 7.3 as Established by Dichroic
 Ratios According to Internal Reflection Theory

<u>Theoretical</u>	
Vertical Orientation	$A_{\perp}/A_{\parallel} = 4.85$
Random Orientation	$A_{\perp}/A_{\parallel} = 0.82$
<u>Experimental</u>	
Concentration of SDS $= 1.0 \times 10^{-3} \text{ M}$	$A_{\perp}/A_{\parallel} = 0.031/0.022$ $= 1.41$

surface were compared with the time dependence of the hydrophobic character of the alumina surface as measured by contact-angle goniometry. The contact-angle experimental techniques are similar to those described previously (33). Figure 5 displays this comparison. It can be seen that the adsorption density of SDS on Al_2O_3 increases linearly for the first six hours, followed by a more gradual rise thereafter. The contact angle increases rapidly to 75° after two hours then decreases significantly, achieving its equilibrium value of about 30° after approximately six hours. These results are interpreted as indicating that, after two hours, the randomly adsorbed SDS (approximately equivalent to a monolayer) has maximum exposure of the aliphatic groups and that upon further adsorption a tail-tail configuration similar to an "admicelle" is established (again in random orientation) and the hydrophobicity of the surface reduced.

Fluorite/Oleate

Because of its large useful transmission range ($33,000-1,100 \text{ cm}^{-1}$), fluorite (CaF_2) is an ideal substrate for in-situ FTIR/IRS study. It is well known that the semisoluble salt minerals (including fluorite) tend to form surface and/or bulk precipitates of the collector salt. Such surface precipitation leads to multilayer formation. As expected, the in-situ spectrum of surface-precipitated calcium oleate has been found to be quite similar to the ex-situ spectrum of bulk precipitated calcium oleate (22).

Of greater significance, however, is the in-situ spectrum of the chemisorbed state at what appears to be equivalent to monolayer coverage of oleate at the fluorite surface. Shown in Figure 6 are the in-situ spectra of precipitated and chemisorbed oleate adsorbed on a fluorite IRE. The chemisorbed spectrum is characterized by a single peak at 1550 cm^{-1} and the precipitated calcium oleate spectrum

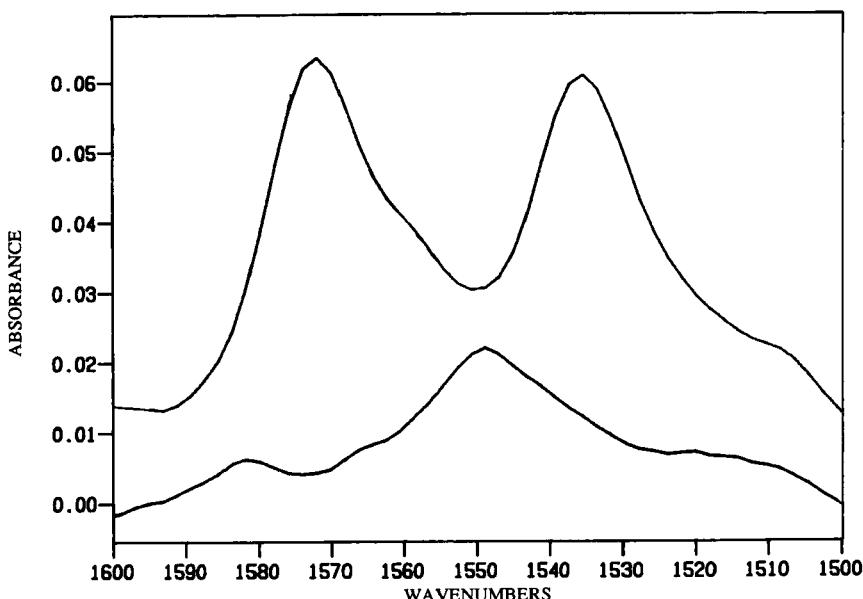


Figure 6. In-situ spectra chemisorbed and surface-precipitated oleate adsorbed on a fluorite IRE from 1×10^{-4} M (top) and 1×10^{-5} M (bottom) oleate solutions, respectively ($\text{pH} = 9.5$).

contains a doublet at 1574 and 1535 cm^{-1} . The peaks in this region are due to the carboxylate stretching vibration of adsorbed oleate (34). Furthermore, adsorption densities can be calculated from the in-situ FTIR/IRS spectra (3050 - 2800 cm^{-1}) and the adsorption isotherms constructed as shown in Figure 7 for 25°C and 40°C . The increase in adsorption density of oleate on fluorite in the chemisorbed region (1×10^{-6} - 5×10^{-5} M) further substantiates prior radiotracer and microcalorimetric studies describing this endothermic chemisorption reaction (35,36).

Sphalerite/Xanthate

In-situ, xanthate adsorption density measurements at the sphalerite, ZnS , surface have not been reported in the literature. However, the flotation behavior suggests that the adsorption potential is small. Modest flotation of sphalerite with ethylxanthate is only possible at KEX concentrations exceeding 1×10^{-2} M (37). Even for amylxanthate, a concentration of 1×10^{-4} M is required to achieve appreciable flotation. The sphalerite/KEX, KAX system was examined in-situ by FTIR/IRS using a cubic, isotropic zinc sulfide single crystal

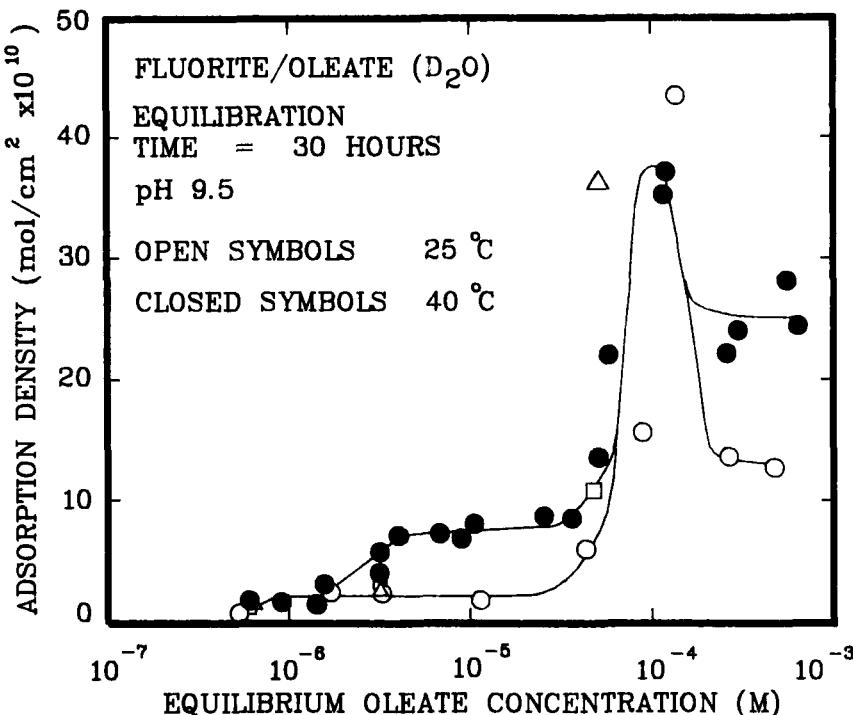


Figure 7. Isotherms for oleate adsorption by a fluorite IRE at $25\text{ }^\circ\text{C}$ (○) and $40\text{ }^\circ\text{C}$ (●) as calculated from in-situ FTIR/IRS data.

as the reactive IRE. Shown in Figure 8 is the in-situ spectrum of amyloxanthate, in the aliphatic region, $3000-2800\text{ cm}^{-1}$, adsorbed on sphalerite from a D_2O solution. From this spectrum, the adsorption density was calculated from Equation (1) and was found, as expected, to be significantly less than an equivalent monolayer. Furthermore, in another experiment with KEX, no adsorption of ethylxanthate could be detected, as shown in Table 5. Under the conditions specified in Table 5, the surfaces were found to be hydrophilic (i.e., no contact angle was observed in either case).

Sylvite/Octylamine

The flotation chemistry of soluble salt minerals has intrigued researchers for many years. Detailed surface chemistry study has been difficult due to the sensitivity of the salt/brine interface to changes in temperature and brine composition. As a result, little

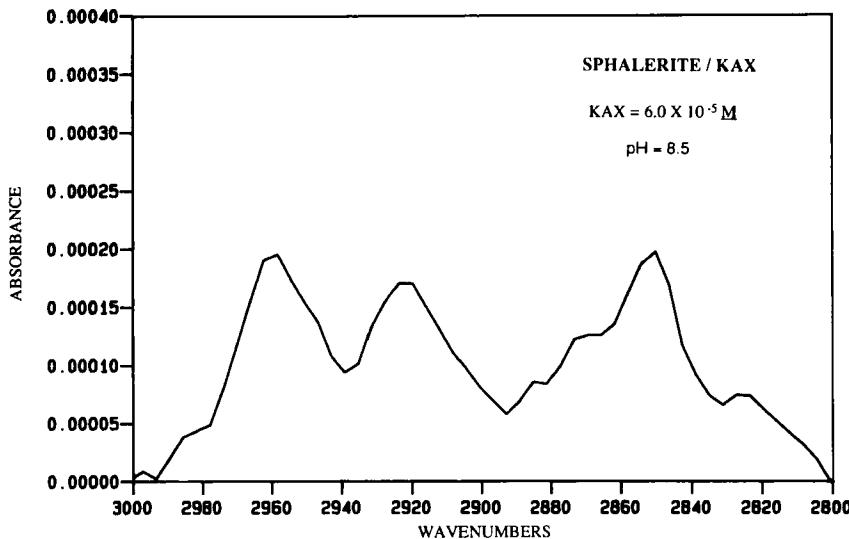


Figure 8. In-situ FTIR/IRS spectrum of amylixanthate adsorbed at the surface of a sphalerite IRE from 6×10^{-5} M KAX solution (pH = 8.5).

Table 5.
Xanthate Adsorption at the
Surface of a Sphalerite IRE (pH 8.5)
as Calculated from In-Situ FTIR/IRS Data.

Collector	Concentration (M)	Adsorption Density (mol/cm ²)
KEX	7.3×10^{-5}	not detected
KAX	6.0×10^{-5}	4.5×10^{-12}

information is available regarding collector adsorption density in soluble salt flotation systems. At the present time in-situ FTIR/IRS experiments are in progress using soluble salt IREs, and those results will be presented at the XVII International Mineral Processing Congress in Dresden, East Germany in September of 1991. Preliminary in-situ FTIR/IRS results for the sylvite/octylamine system suggest that for flotation to occur, multilayers of octylamine must be adsorbed at the sylvite/IRE surface.

Besides the adsorption density of octylamine, also of interest in soluble salt flotation is the adsorption state of the collector species. Shown in Figure 9 is the in-situ spectrum of adsorbed octylamine on KCl in the region 1650-1450 cm^{-1} . The peaks at 1608, 1581, 1514, and 1466 can be assigned to N-H , N^+-H_3 , and CH_2 deformation vibrations (38). The presence of N^+-H_3 bands suggests that the surface-active species in this system is the protonated octylamine.

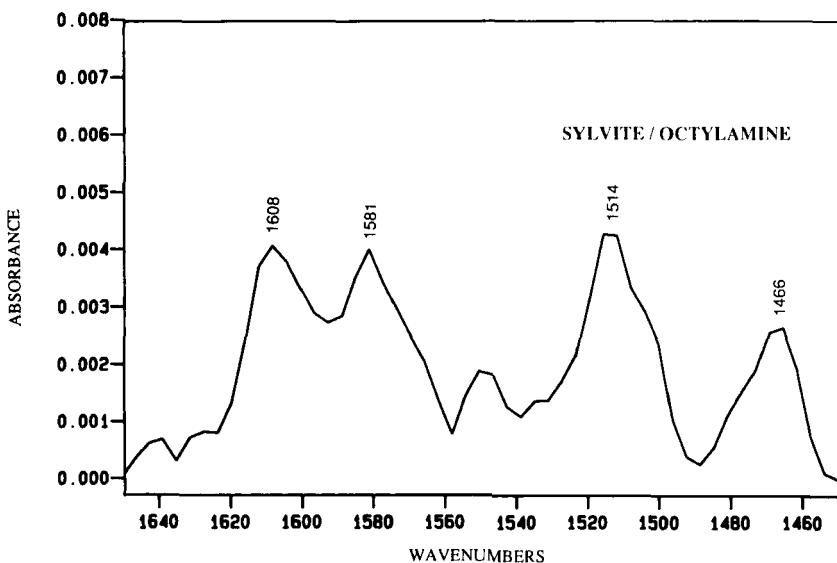


Figure 9. In-situ FTIR/IRS spectrum of octylamine adsorbed at the surface of a sylvite IRE from a 5×10^{-3} M $\text{R}_8\text{NH}_3\text{Cl}$ solution (pH = 4.3).

Near-Infrared

One limitation in the use of reactive IREs is that not all mineral crystals are infrared-transparent in the most commonly used region, the mid-infrared ($4,000\text{-}500\text{ cm}^{-1}$). Shown in Figure 10 are the transmission spectra of several single-crystal mineral IREs that have been used in the mid-infrared region. As can be noted from Figure 3, the oxide IREs tend to absorb IR radiation at lower wavenumbers than the other crystal types. In fact, many minerals are not transparent in any region of the mid-infrared. Miller and Kellar (22) have proposed using FTIR/IRS in the near-infrared ($15,000\text{-}4,000\text{ cm}^{-1}$) for studying collector adsorption reactions and thus extending the utility of the reactive IRE method. Preliminary experiments have demonstrated that such FTIR/IRS measurements are possible in the near-infrared for the mid-infrared opaque mineral calcite, CaCO_3 (39).

The absorbance bands in the near-infrared are combination and overtone bands of the fundamental mid-infrared bands. These bands are much weaker than those found in the mid-IR. Typical intensity changes for a fundamental band and its overtones can be seen in Table 6 (40). The weak absorbance present in the near-IR, compared to the

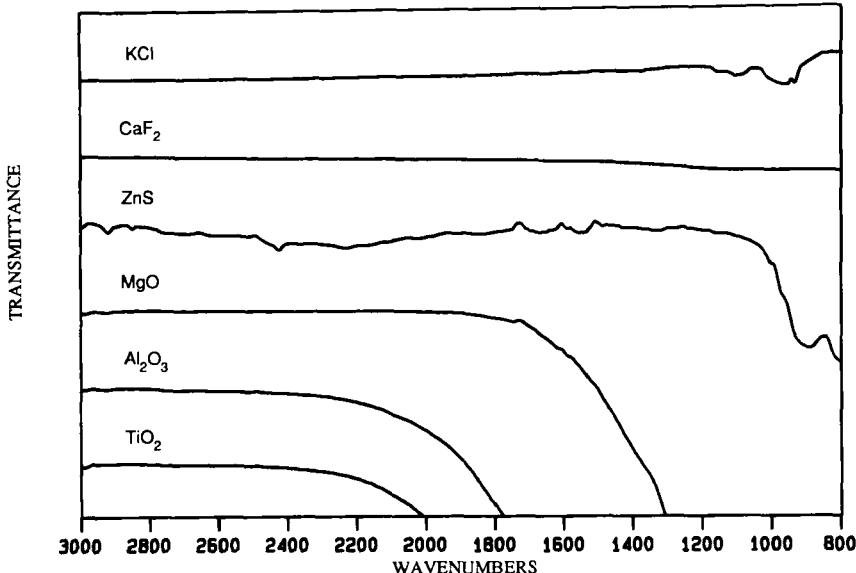


Figure 10. Transmission spectra of selected mineral IREs.

Table 6.
Relative Intensity for Different
Overtones in the Near-Infrared.

Overtone	Relative Absorbance
Fundamental	100
First	9
Second	0.3
Third	0.01

mid-IR, can be overcome somewhat by higher energy sources and more sensitive detectors that are available for this region of the electromagnetic spectrum.

Spectroelectrochemistry

In-situ spectroelectrochemistry for the study of flotation systems has been confined to sulfide mineral particulate suspensions and electrodes pressed against an "inert" IRE (Method 1). No spectroelectrochemical studies on sulfide minerals using reactive IREs (Method 3) have been reported. This is most likely because of the lack of commercially available single crystals and/or natural sulfide minerals with sufficient optical quality.

Recently it has been shown that in certain situations electrochemical effects can be of significance in nonsulfide mineral flotation systems (41). The use of reactive IREs for the investigation of these electrochemical effects is ideal since a number of nonsulfide minerals are transparent in the mid-IR region. Spectroelectrochemistry using FTIR/IRS with reactive IREs yields essentially the same information that was presented in Figure 3 but allows for the detailed analysis of electrochemical surface reactions. Of course, the use of near-IR radiation would allow many mineral flotation systems in which electrochemical effects are important to be studied in-situ with reactive IREs.

SUMMARY

The use of infrared spectroscopy for the in-situ characterization of surface reactions has been reviewed. In general, FTIR/IRS is the only available experimental technique for the in-situ infrared study of surfaces. Three methods for in-situ FTIR/IRS have been discussed. The preferred method involves the use of reactive IREs. Figure 3 summarizes the advantages of in-situ FTIR/IRS using reactive IREs.

As is evident from Figure 3, the use of reactive IREs for the in-situ study of adsorption reactions allows for quantitative measure of the adsorption density and the extent of orientation of surfactants at the reactive IRE surface. Examples from each of the major flotation systems have been presented. The alumina (Al_2O_3)/sodium dodecylsulfate system was used as an example for insoluble oxide/silicate flotation, while the fluorite (CaF_2)/oleate system was used for semisoluble salt flotation. In the case of sulfide flotation, sphalerite (ZnS) was used as the reactive IRE with potassium amylixanthate and potassium ethylxanthate as collectors. As an example of soluble salt flotation, sylvite (KCl) was used as the IRE with n-octylamine as collector.

Finally, the use of reactive IREs in the near-IR spectral region and for spectroelectrochemical research was discussed.

ACKNOWLEDGEMENTS

This work was supported by DOE Basic Sciences Division Grant No. DE-FG-02-84ER13181. The authors would like to express their appreciation to Ms. Birgitta Beuthe for her help with the contact-angle measurements and Ms. Kay Argyle for her help with the preparation of the manuscript.

REFERENCES

1. French, R. O., M. E. Wadsworth, M. A. Cook, and S. B. Cutler, "The Quantitative Application of Infrared Spectroscopy to Studies in Surface Chemistry," Journal of Physical Chemistry, 58, pp. 805-811 (1954).
2. Eyring, E. M., and M. E. Wadsworth, "Differential Infrared Spectra of Adsorbed Monolayers n-Hexanethiol on Zinc Minerals," Trans. AIME, 205, pp. 531-535 (1956).
3. Poling, G. W., and J. Leja, "Infrared Study of Xanthate Adsorption on Vacuum Deposited Films of Lead Sulfide and Metallic Copper under Conditions of Controlled Oxidation," Journal of Physical Chemistry, 67, pp. 2121-2126 (1963).
4. Fuerstenau, M. C., and J. D. Miller, "The Role of the Hydrocarbon Chain in Anionic Flotation of Calcite," Trans. AIME, pp. 153-160 (1967).
5. Lovell, V. M., L. A. Goold, and N. P. Finkelstein, "Infrared Studies of the Adsorption of Oleate Species on Calcium Fluoride," International Journal of Mineral Processing, 1, pp. 183-192 (1974).

6. Ataman, O. Y., and H. B. Mark, "Alkali Halide Pelleting Technique for Solid Sampling in Infrared Spectroscopy," Applied Spectroscopy Reviews, 13, pp. 1-13 (1977).
7. Harrick, N. J., Internal Reflection Spectroscopy, 2nd ed., Harrick Scientific Corp., Ossining, NY, 1979, p. 327.
8. Kellar, J. J., W. M. Cross, and J. D. Miller, "Adsorption Density Calculations from In-Situ FTIR/IRS Data at Dilute Surfactant Concentrations," Applied Spectroscopy, 43, 8, pp. 1456-1459 (1989).
9. Strojek, J. W., J. Mielczarski, and P. Nowak, "Spectroscopic Investigations of the Solid-Liquid Interface by the ATR Technique," Advances in Colloid and Interface Science, 19, pp. 309-327 (1983).
10. Hansen, W. N., "Internal Reflection Spectroscopy in Electrochemistry," Advances in Electrochemistry and Electrochemical Engineering, R. H. Muller, ed., Wiley-Interscience, New York, 1973, pp. 1-60.
11. Mielczarski, J., "In-Situ ATR-IR Spectroscopy Study of Xanthate Adsorption on Marcasite," Colloids and Surfaces, 17, pp. 251-271 (1986).
12. Leppinen, J. O., "Infrared Studies of Thiol Collectors on Lead Sulfide," 1987 SME-AIME Convention, Preprint 87-73, 1987.
13. Leppinen, J. O., C. J. Basilic, and R. H. Yoon, "FTIR Study of Thionocarbamate Adsorption on Sulfide Minerals," Colloids and Surfaces, 32, pp. 113-125 (1988).
14. Mielczarski, J., "The Role of Impurities of Sphaierite in the Adsorption of Ethyl Xanthate and its Flotation," International Journal of Mineral Processing, 16, pp. 179-194 (1986).
15. Leppinen, J. O., C. J. Basilic, and R. H. Yoon, "In-Situ FTIR Spectroscopy Study of Ethyl Xanthate Electrosorption on Sulfide Minerals," Proceedings: Electrochemistry in Minerals and Metals Processing II, P. E. Richardson, and R. Woods, eds., The Electrochemical Society, Pennington, NJ, 1988, pp. 49-59.
16. Tejedor-Tejedor, M. I., and M. A. Anderson, "In-Situ Attenuated Total Reflection Fourier Transform Infrared Studies of the Goethite (α -FeOOH)-Aqueous Solution Interface," Langmuir, 2, 2, pp. 203-210 (1986).
17. Walker, G. L., and P. K. Weissborn, "In-Situ Study of the Solution/Solid Interface between 8-Hydroxyquinoline and Tantaium Pentoxide Using ATR-FTIR," to be published in Colloids and Surfaces (1989).

18. Mielczarski, J., J. Nowak, and J. W. Strojek, "Correlation between the Adsorption of Sodium Dodecyl Sulphate on Calcium Fluoride and its Floatability -- An Infra-red Internal Reflection Spectrophotometric Study," International Journal of Mineral Processing, 11, pp. 303-317 (1983).
19. Kuys, K., and N. K. Roberts, "In-Situ Investigations of the Adsorption of Styrene Phosphonic Acid on Cassiterite by FTIR-ATR Spectroscopy," Colloids and Surfaces, 24, pp. 1-17 (1987).
20. Sperline, R. P., S. Muralidharan, and H. Freiser, "In-Situ Determination of Species Adsorbed at a Solid-Liquid Interface by Quantitative Infrared Attenuated Total Reflectance Spectrophotometry," Langmuir, 3, 2, pp. 198-202 (1987).
21. Parry, D. B., and J. M. Harris, "Attenuated Total Reflection FT-IR Spectroscopy for Measuring Interfacial Reaction Kinetics at Silica Surfaces," Applied Spectroscopy, 42, 6, pp. 997-1004 (1988).
22. Miller, J. D., and J. J. Kellar, "Quantitative In-Situ Analysis of Collector Adsorption Reactions by Internal Reflection FTIR Spectroscopy," Challenges in Mineral Processing, K. V. Sastry, ed., SME-AIME, Littleton, Colorado, 1989, pp. 109-129.
23. Haller, G. L., and R. W. Rice, "A Study of Adsorption on Single Crystals by Internal Reflection Spectroscopy," Journal of Physical Chemistry, 74, 25, pp. 4386-4393 (1970).
24. Modi, H. J., and D. W. Fuerstenau, "Flotation of Corundum, An Electrochemical Interpretation," Transactions AIME, 217, pp. 381-387 (1960).
25. Yoon, R. H., and T. Salman, "Chemisorption of Sodium Lauryl Sulfate on $\gamma\text{-Al}_2\text{O}_3$," Colloid and Interface Science, vol. 3, M. Kerker, ed., Academic Press, New York, 1976, pp. 233-246.
26. Chandar, P., P. Somasundaran, and N. J. Turro, "Fluorescence Probe Studies on the Structure of the Adsorbed Layer of Dodecyl Sulfate at the Alumina-Water Interface," Journal of Colloid and Interface Science, 117, 1, pp. 31-46 (1987).
27. Yeskie, M. A., and J. H. Harwell, "On the Structure of Aggregates of Adsorbed Surfactants: The Surface Charge Density at the Hemimicelle/Admicelle Transition," Journal of Physical Chemistry, 92, pp. 2346-2352 (1988).
28. Wu, J., Lee, C., E. A. O'Rear, and J. H. Harwell, "Adsorbed Surfactants Bilayers as Two-Dimensional Solvents: Surface Modification by Thin-Film Formation," Surfactant Based Separation Processes, Surfactant Science Series Vol. 33, J. F. Scamehorn

and J. H. Harwell, eds., Marcel Dekker, Inc., New York, 1989, pp. 173-203.

29. Somasundaran, P., J. T. Kunjappu, C. V. Kumar, N. J. Turro, and J. K. Barton, "Excited State Resonance Raman Spectroscopy as a Probe of Alumina-Sodium Dodecyl Sulfate Hemimicelles," Langmuir, 5, 1, pp. 215-218 (1989).
30. Cross, W. M., J. J. Kellar, and J. D. Miller, "Adsorption Density Measurements by FTIR/ IRS in the Presence of an Absorbing Outer Phase," to be submitted to Applied Spectroscopy (1989).
31. Maoz, R., and J. Sagiv, "On the Formation and Structure of Self-Assembling Monolayers," Journal of Colloid and Interface Science, 100, 2, pp. 465-496 (1984).
32. Tillman, N., A. Ullman, J. S. Schildkraut, and T. L. Penner, "Incorporation of Phenoxy Groups in Self-Assembled Monolayers of Trichlorosilane Derivatives: Effects on Film Thickness, Wettability, and Molecular Orientation," Journal of the American Chemical Society, 110, pp. 6136-6144 (1988).
33. Wakamatsu, T., and D. W. Fuerstenau, "Effect of Alkyl Sulfonates on the Wettability of Alumina," Trans. AIMEj, 254, pp. 123-126 (1972).
34. Bellamy, K. J., The Infrared Spectra of Complex Molecules, Chapman and Hall, London, 1975, pp. 183-200.
35. Hu, J. S., M. Misra, and J. D. Miller, "Effect of Temperature and Oxygen on Oleate Adsorption by Fluorite," International Journal of Mineral Processing, 18, pp. 57-72 (1986).
36. Miller, J. D., J. S. Hu, and R. Jin, "Thermochemistry of Oleate Adsorption at the Fluorite/Water Interface," accepted for publication in Colloids and Surfaces (1989).
37. Clifford, K. L., "Mechanism of the Flotation of Natural Sphalerite with Xanthates," Ph.D. Thesis, University of Utah, 1971, 63 pp.
38. Leja, J., Surface Chemistry of Froth Flotation, Plenum Press, New York, 1982, p. 303.
39. Kellar, J. J., W. M. Cross, and J. D. Miller, "In-Situ Near-Infrared Internal Reflection Spectroscopy of Collector Adsorption Reactions Using Reactive Internal Reflection Elements," presented at the 119th Annual SME/AIME Meeting, Preprint No. 90-170, 1990.
40. Murray, I., and P. C. Williams, "Chemical Principles of Near-Infrared Technology," Near-Infrared Technology in the Agricul-

tural and Feed Industries, P. Williams and K. Norris, eds., American Association of Cereal Chemists, Inc., St. Paul, MN, 1987, pp. 17-34.

41. Cross, W. M., R. Y. Wan, and J. D. Miller, "The Effect of Potential Bias on the Hydrophobic Character of Lanthanum Fluoride Electrodes in Oleate Solutions," Proceedings: Electrochemistry in Mineral and Metal Processing II, P. E. Richardson and R. Woods, eds., The Electrochemical Society, Pennington, NJ, 1988, pp. 198-210.